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Nesting and overlapping concepts 



AI is ubiquitous in everyday life



Many industries depend on AI 
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AI has the potential to advance 
medicine
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AI is not a part of medical education
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Increasing prevalence of medical AI
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Early identification of patients admitted to hospital for covid-19 
at risk of clinical deterioration: model development and multisite 
external validation study
Fahad Kamran,1,* Shengpu Tang,1,* Erkin Otles,2,3 Dustin S McEvoy,4 Sameh N Saleh,5,6  
Jen Gong,7 Benjamin Y Li,1,3 Sayon Dutta,4,8 Xinran Liu,9 Richard J Medford,5,6  
Thomas S Valley,10,11 Lauren R West,12 Karandeep Singh,10,13 Seth Blumberg,9,14  
John P Donnelly,10,13 Erica S Shenoy,12,15,16 John Z Ayanian,10,11 Brahmajee K Nallamothu,10,11

Michael W Sjoding,10,11,† Jenna Wiens1,10,†

ABSTRACT
OBJECTIVE
To create and validate a simple and transferable 
machine learning model from electronic health record 
data to accurately predict clinical deterioration in 
patients with covid-19 across institutions, through 
use of a novel paradigm for model development and 
code sharing.
DESIGN
Retrospective cohort study.
SETTING
One US hospital during 2015-21 was used for model 
training and internal validation. External validation 
was conducted on patients admitted to hospital 
with covid-19 at 12 other US medical centers during 
2020-21.
PARTICIPANTS
33119 adults (≥18 years) admitted to hospital with 
respiratory distress or covid-19.
MAIN OUTCOME MEASURES
An ensemble of linear models was trained on the 
development cohort to predict a composite outcome 
of clinical deterioration within the )rst )ve days of 
hospital admission, de)ned as in-hospital mortality 
or any of three treatments indicating severe illness: 
mechanical ventilation, heated high flow nasal 
cannula, or intravenous vasopressors. The model was 
based on nine clinical and personal characteristic 

variables selected from 2686 variables available in 
the electronic health record. Internal and external 
validation performance was measured using the 
area under the receiver operating characteristic 
curve (AUROC) and the expected calibration error—
the di+erence between predicted risk and actual 
risk. Potential bed day savings were estimated by 
calculating how many bed days hospitals could save 
per patient if low risk patients identi)ed by the model 
were discharged early.
RESULTS
9291 covid-19 related hospital admissions at 13
medical centers were used for model validation, 
of which 1510 (16.3%) were related to the primary 
outcome. When the model was applied to the internal 
validation cohort, it achieved an AUROC of 0.80 (95% 
con)dence interval 0.77 to 0.84) and an expected 
calibration error of 0.01 (95% con)dence interval 
0.00 to 0.02). Performance was consistent when 
validated in the 12 external medical centers (AUROC 
range 0.77-0.84), across subgroups of sex, age, race, 
and ethnicity (AUROC range 0.78-0.84), and across 
quarters (AUROC range 0.73-0.83). Using the model to 
triage low risk patients could potentially save up to 7.8
bed days per patient resulting from early discharge.
CONCLUSION
A model to predict clinical deterioration was 
developed rapidly in response to the covid-19
pandemic at a single hospital, was applied externally 
without the sharing of data, and performed well across 
multiple medical centers, patient subgroups, and 
time periods, showing its potential as a tool for use in 
optimizing healthcare resources.

Introduction
Risk stratification models that provide advance warning 
of patients at high risk of clinical deterioration during 
hospital admission could help care teams manage 
resources, including interventions, hospital beds, and 
staffing.1 2 For example, knowing how many and which 
patients will require ventilators could prompt hospitals 
to increase ventilator supply while care teams start to 
allocate ventilators to patients most in need.3 Beyond 
identifying high risk patients, such models could 
also help to identify low risk patients (eg, those who 
are unlikely to deteriorate) as candidates for early 
discharge (<48 hours from admission), potentially 
freeing up hospital resources.4-7
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WHAT IS ALREADY KNOWN ON THIS TOPIC
Risk strati)cation models can augment clinical care and help hospitals better 
plan and allocate resources in healthcare settings
A useful risk strati)cation model should generalize across di+erent patient 
populations, though generalization is o.en overlooked when models are 
developed because of the di/culty in sharing patient data for external validation
Models that have been externally validated have failed to generalize to 
populations that di+ered from the cohort on which the models were built

WHAT THIS STUDY ADDS
This study presents a paradigm for model development and external validation 
without the need for data sharing, while still allowing for quick and thorough 
evaluations of a model within di+erent patient populations
The )ndings suggest that the use of data driven feature selection combined with 
clinical judgment can help identify meaningful features that allow the model to 
generalize across a variety of patient settings
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Development and Validation of Models to Predict Pathological
Outcomes of Radical Prostatectomy in Regional and
National Cohorts

Erkin €Otleş ,1,2 Brian T. Denton,1,3 Bo Qu,1 Adharsh Murali,4,* Selin Merdan,1 Gregory B. Auffenberg,5

Spencer C. Hiller,3 Brian R. Lane,6 Arvin K. George3 and Karandeep Singh3,4,7,8,† for the Michigan
Urological Surgery Improvement Collaborative
1Department of Industrial & Operations Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan
2Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan
3Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
4Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, Michigan
5Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
6Division of Urology, Spectrum Health, Grand Rapids, Michigan
7Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
8School of Information, University of Michigan, Ann Arbor, Michigan

Purpose: Prediction models are recommended by national guidelines to support
clinical decision making in prostate cancer. Existing models to predict patho-
logical outcomes of radical prostatectomy (RP)dthe Memorial Sloan Kettering
(MSK) models, Partin tables, and the Briganti nomogramdhave been developed
using data from tertiary care centers and may not generalize well to other
settings.

Materials and Methods: Data from a regional cohort (Michigan Urological
Surgery Improvement Collaborative [MUSIC]) were used to develop models to
predict extraprostatic extension (EPE), seminal vesicle invasion (SVI), lymph
node invasion (LNI), and nonorgan-confined disease (NOCD) in patients un-
dergoing RP. The MUSIC models were compared against the MSK models,
Partin tables, and Briganti nomogram (for LNI) using data from a national
cohort (Surveillance, Epidemiology, and End Results [SEER] registry).

Results: We identified 7,491 eligible patients in the SEER registry. The MUSIC
model had good discrimination (SEER AUC EPE: 0.77; SVI: 0.80; LNI: 0.83;
NOCD: 0.77) and was well calibrated. While the MSK models had similar
discrimination to the MUSIC models (SEER AUC EPE: 0.76; SVI: 0.80; LNI:
0.84; NOCD: 0.76), they overestimated the risk of EPE, LNI, and NOCD. The
Partin tables had inferior discrimination (SEER AUC EPE: 0.67; SVI: 0.76; LNI:
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AUC [ area under the receiver
operating characteristic curve

EPE [ extraprostatic extension
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Collaborative

NOCD [ nonorgan-confined
disease

PCa [ prostate cancer

PSA [ prostate specific antigen

RP [ radical prostatectomy

SEER [ Surveillance, Epidemi-
ology, and End Results Program

SVI [ seminal vesicle invasion
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External Validation of a Widely Implemented Proprietary Sepsis
Prediction Model in Hospitalized Patients
Andrew Wong, MD; Erkin Otles, MEng; John P. Donnelly, PhD; Andrew Krumm, PhD; Jeffrey McCullough, PhD;
Olivia DeTroyer-Cooley, BSE; Justin Pestrue, MEcon; Marie Phillips, BA; Judy Konye, MSN, RN;
Carleen Penoza, MHSA, RN; Muhammad Ghous, MBBS; Karandeep Singh, MD, MMSc

IMPORTANCE The Epic Sepsis Model (ESM), a proprietary sepsis prediction model, is
implemented at hundreds of US hospitals. The ESM’s ability to identify patients with sepsis
has not been adequately evaluated despite widespread use.

OBJECTIVE To externally validate the ESM in the prediction of sepsis and evaluate its potential
clinical value compared with usual care.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted among
27 697 patients aged 18 years or older admitted to Michigan Medicine, the academic health
system of the University of Michigan, Ann Arbor, with 38 455 hospitalizations between
December 6, 2018, and October 20, 2019.

EXPOSURE The ESM score, calculated every 15 minutes.

MAIN OUTCOMES AND MEASURES Sepsis, as defined by a composite of (1) the Centers for
Disease Control and Prevention surveillance criteria and (2) International Statistical
Classification of Diseases and Related Health Problems, Tenth Revision diagnostic codes
accompanied by 2 systemic inflammatory response syndrome criteria and 1 organ
dysfunction criterion within 6 hours of one another. Model discrimination was assessed using
the area under the receiver operating characteristic curve at the hospitalization level and with
prediction horizons of 4, 8, 12, and 24 hours. Model calibration was evaluated with calibration
plots. The potential clinical benefit associated with the ESM was assessed by evaluating the
added benefit of the ESM score compared with contemporary clinical practice (based on
timely administration of antibiotics). Alert fatigue was evaluated by comparing the clinical
value of different alerting strategies.

RESULTS We identified 27 697 patients who had 38 455 hospitalizations (21 904 women
[57%]; median age, 56 years [interquartile range, 35-69 years]) meeting inclusion criteria, of
whom sepsis occurred in 2552 (7%). The ESM had a hospitalization-level area under the
receiver operating characteristic curve of 0.63 (95% CI, 0.62-0.64). The ESM identified 183 of
2552 patients with sepsis (7%) who did not receive timely administration of antibiotics,
highlighting the low sensitivity of the ESM in comparison with contemporary clinical practice.
The ESM also did not identify 1709 patients with sepsis (67%) despite generating alerts for an
ESM score of 6 or higher for 6971 of all 38 455 hospitalized patients (18%), thus creating a
large burden of alert fatigue.

CONCLUSIONS AND RELEVANCE This external validation cohort study suggests that the ESM
has poor discrimination and calibration in predicting the onset of sepsis. The widespread
adoption of the ESM despite its poor performance raises fundamental concerns about sepsis
management on a national level.

JAMA Intern Med. doi:10.1001/jamainternmed.2021.2626
Published online June 21, 2021.
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Mind the Performance Gap:
Examining Dataset Shift During Prospective Validation

Erkin Ötles.
⇤ 1,2 eotles@umich.edu

Jeeheh Oh ⇤ 3 jeeheh@umich.edu
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Michelle Bochinski 4

Hyeon Joo 5,6
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Jenna Wiens 3 wiensj@umich.edu
⇤Authors of equal contribution.
1Department of Industrial & Operations Engineering, University of Michigan; 2Medical Scientist Training
Program, University of Michigan Medical School; 3Division of Computer Science & Engineering, University of
Michigan; 4Nursing Informatics, Michigan Medicine; 5Department of Anesthesiology, University of Michigan
Medical School; 6Department of Learning Health Sciences, University of Michigan Medical School; 7Infection
Control Unit & Division of Infectious Diseases, Massachusetts General Hospital & Harvard Medical School;
8Department of Internal Medicine - Division of Infectious Diseases, University of Michigan Medical School;
9Department of Microbiology & Immunology, University of Michigan Medical School

Abstract
Once integrated into clinical care, patient risk stratification models may perform worse com-
pared to their retrospective performance. To date, it is widely accepted that performance
will degrade over time due to changes in care processes and patient populations. However,
the extent to which this occurs is poorly understood, in part because few researchers re-
port prospective validation performance. In this study, we compare the 2020-2021 (’20-’21)
prospective performance of a patient risk stratification model for predicting healthcare-
associated infections to a 2019-2020 (’19-’20) retrospective validation of the same model.
We define the di↵erence in retrospective and prospective performance as the performance
gap. We estimate how i) “temporal shift”, i.e., changes in clinical workflows and patient
populations, and ii) “infrastructure shift”, i.e., changes in access, extraction and transfor-
mation of data, both contribute to the performance gap. Applied prospectively to 26,864
hospital encounters during a twelve-month period from July 2020 to June 2021, the model
achieved an area under the receiver operating characteristic curve (AUROC) of 0.767 (95%
confidence interval (CI): 0.737, 0.801) and a Brier score of 0.189 (95% CI: 0.186, 0.191).
Prospective performance decreased slightly compared to ’19-’20 retrospective performance,

© 2021 E. Ötleş & J. Oh et al.
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A Generalizable, Data-Driven Approach to Predict Daily Risk of 
Clostridium difficile Infection at Two Large Academic Health 
Centers

Jeeheh Oh, MS1,a, Maggie Makar, MS2,a, Christopher Fusco, BS3, Robert McCaffrey, BS3,
Krishna Rao, MD, MS4, Erin E. Ryan, MPH, CCRP5,6, Laraine Washer, MD4,7, Lauren R. 
West, MPH5,6, Vincent B. Young, MD, PhD4,8, John Guttag, PhD2, David C. Hooper, MD5,6,9,
Erica S. Shenoy, MD, PhD5,6,9,10,b, and Jenna Wiens, PhD1,b

1.Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan
2.Electrical Engineering and Computer Science Department, Massachusetts Institute of 
Technology, Cambridge, Massachusetts
3.Information Systems, Partners HealthCare, Boston, Massachusetts
4.Infectious Diseases Division, Department of Internal Medicine, University of Michigan Medical 
School, Ann Arbor, Michigan
5.Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 
Boston, Massachusetts
6.Infection Control Unit, Massachusetts General Hospital, Boston, Massachusetts
7.Department of Infection Prevention and Epidemiology, Michigan Medicine, Ann Arbor, Michigan
8.Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, 
Michigan
9.Harvard Medical School, Boston, Massachusetts
10.Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, 
Boston, Massachusetts.

Abstract
OBJECTIVE.—An estimated 293,300 healthcare-associated cases of Clostridium difficile 
infection (CDI) occur annually in the United States. To date, research has focused on developing 
risk prediction models for CDI that work well across institutions. However, this one-size-fits-all 
approach ignores important hospital-specific factors. We focus on a generalizable method for 
building facility-specific models. We demonstrate the applicability of the approach using 
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We’ve got to start training physicians 
on AI fundamentals

Commentary

Teaching artificial intelligence
as a fundamental toolset of medicine
Erkin Ötlesx,1,2,6,7,* Cornelius A. James,3,5 Kimberly D. Lomis,4 and James O. Woolliscroft5
1Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
2Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
3Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
4American Medical Association, Chicago, IL, USA
5Departments of Internal Medicine and Learning Health Sciences, University of Michigan, Ann Arbor, MI, USA
6Present address: 1225 Beal Avenue, Ann Arbor, MI 48109, USA
7Twitter: @eotles
*Correspondence: eotles@umich.edu
https://doi.org/10.1016/j.xcrm.2022.100824

Artificial intelligence (AI) is transforming the practice of medicine. Systems assessing chest radiographs, pa-
thology slides, and early warning systems embedded in electronic health records (EHRs) are becoming ubiq-
uitous in medical practice. Despite this, medical students have minimal exposure to the concepts necessary
to utilize and evaluate AI systems, leaving them under prepared for future clinical practice. We must work
quickly to bolster undergraduate medical education around AI to remedy this. In this commentary, we pro-
pose that medical educators treat AI as a critical component of medical practice that is introduced early
and integrated with the other core components of medical school curricula. Equipping graduating medical
students with this knowledge will ensure they have the skills to solve challenges arising at the confluence
of AI and medicine.

The promise of artificial intelligence (AI) to
aid the practice ofmedicine has long been
a topic of discussion.1 What was once an
abstract discussion of the future of medi-
cine is now a clinical reality. Software em-
ploying AI is found throughout the clinical
care continuum. The US Food and Drug
Administration (FDA) has approved over
100 AI software devices.2 The purposes
of these software devices range from
measuring pulmonary nodules in chest
CT scans to detecting different cell types
in peripheral blood smears and screening
for diabetic retinopathy using photos
taken in primary-care settings. However,
not all AI systems require FDA approval.
Some of the most widely deployed AI sys-
tems are early warning systems that fall
outside the FDA’s jurisdiction. AI systems
for detecting in-hospital deterioration and
sepsis are deployed at hundreds of US
hospitals.3 The recent increased interest
in medical AI is due to the availability of
massive amounts of data, facilitated by
widespread adoption of electronic health
records (EHRs), and advances in AI tech-
niques, driven by a combination of new
hardware and computational methods.
Despite the accelerating use of AI in

clinical practice, the pace of incorporating

AI concepts into medical education has
been slow and superficial.4 Only recently
has it been proposed that AI concepts
be included in medical education
curricula.5,6 Most suggestions to date
have framed training in AI as an added
layer to current medical school curricula,
hereafter referred to as undergraduate
medical education (UME). Recommenda-
tions for incorporating AI into UME range
widely, covering the gamut from teaching
medical students how to code to EHR us-
age and the ethics surrounding the adop-
tion of AI.7 However, proposals that treat
AI as an additional curricular element or
course struggle to gain traction in an over-
crowded curriculum. In this commentary,
we offer the collective perspective of a
medical student, practicing physician,
and medical educators. We propose that
medical schools view AI as a fundamental
component of medical practice and
deeply integrate it throughout UME.8

We believe UMEmust quickly transition
to address AI as a fundamental toolset,
meaning that it contains many interrelated
techniques that underpin the practice of
medicine across specialties and care en-
vironments. However, the breadth of AI
presents a challenge for medical educa-

tors seeking to provide a foundation in
UME that can be built upon throughout
one’s career. AI uses computational
methods to process data, from identifying
a pattern to generating a prediction or a
recommendation. AI can be considered
an umbrella term encapsulating many
techniques, such as natural language
processing and machine learning (ML).
Practices from computer science, statis-
tics, decision science, and operations
research intersect with AI. These proced-
ures are built upon a foundation of data
processing dependent on two types of
thinking: computational—being able to
provide instructions to computers unam-
biguously—and statistical—being able to
analyze the information derived from pro-
cesses subject to randomness.

To add to the challenge, like the prac-
tice of medicine, the practice of AI is a
combination of art and science, as AI sys-
tems are components of even larger and
more complicated socio-technical sys-
tems. Therefore, in addition to technical
knowledge, applying AI effectively in clin-
ical practice demands careful consider-
ation of the context, patient values and
preferences, ethics, policy, and physician
user experiences.

Cell Reports Medicine 3, 100824, December 20, 2022 ª 2022 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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